Рабочая программа по биологии 9 класса.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа предназначена для изучения предмета «Общая биология» в 9 классах общеобразовательных школ и рассчитана на 2 часа классных занятий.

Программа курса (68 часов) полностью включает в себя вопросы программы общеобразовательной школы для 10—11 классов. В ней сохранены все разделы и темы, изучаемые в средней общеобразовательной школе, однако содержание каждого учебного блока упрощено в соответствии с возрастными особенностями учащихся и с учетом образовательного уровня. Представлено значительное число лабораторных работ, демонстраций и экскурсий, облегчающих восприятие учебного материала. Последовательность изучения материала также способствует интеграции курса в систему биологического образования, завершаемого в 9 классе.

Программой предусматривается изучение учащимися теоретических и прикладных основ общей биологии. В ней нашли отражение задачи, стоящие в настоящее время перед биологической наукой, решение которых направлено на сохранение окружающей природы и здоровья человека. Особое внимание уделено экологическому воспитанию молодежи. Изучение курса «Общая биология» основывается на знаниях учащихся, полученных при изучении биологических дисциплин в младших классах средней школы по специальным программам, и является продолжением линии освоения биологических дисциплин, начатой в 5 классе учебником «Природоведение» А. А. Плешакова и Н. И. Сонина, учебником «Живой организм» Н. И. Сонина для учащихся 6 классов и учебником «Биология. Многообразие живых организмов» В. Б. Захарова и Н. И. Сонина. Изучение предмета также основывается на знаниях, приобретенных на уроках химии, физики, истории, физическое и экономической географии.

Для повышения образовательного уровня и получения навыков по практическому использованию полученных знаний программой предусматривается выполнение ряда лабораторных работ, которые проводятся после подробного инструктажа и ознакомления учащихся с установленными правилами техники безопасности.

Для углубления знаний и расширения кругозора учащихся рекомендуются экскурсии по разделам программы: «Наследственность и изменчивость организмов», «Эволюция живого мира на Земле», «Взаимоотношения организма и среды. Основы экологии». С этой же целью Предусмотрены демонстрации.

В программе дается примерное распределение материала по разделам и темам (вÜ часах). Предметным комиссиям предоставляется пцэаво вносить предложения по изменению объема щ порядка изложения отдельных тем и вопросов. Эти Изменения в установленном порядке должны быть утверждены заведующим учебной частью (заместителем директора по учебной работе).

В программе сформулированы основные понятия, требования к знаниям и умениям учащихся по основным блокам информации. В конце каждого раздела обозначены межпредметные связи курса «Общая биология» с другими изучаемыми предметами. Предметные комиссии конкретизируют эти связи с учетом распределения предметов по годам обучения.

В программе приведен список; основной, дополнительной и научно-популярной литературы.

СОДЕРЖАНИЕ КУРСА

(68 часов, 2 часа в неделю)

Введение (1 час)

Место курса «Общая биология» в системе естественнонаучных дисциплин, а также в биологических науках. Цели и задачи курса. Значение предмета для понимания единства всего живого и взаимозависимости всех частей биосферы Земли.

РАЗДЕЛ 1

Эволюция живого мира на Земле (21 час)

Тема 1.1.

Многообразие живого мира.

Основные свойства живых организмов (2 часа)

Единство химического состава живой материи; основные группы химических элементов и молекул, образующие живое вещество биосферы. Клеточное строение организмов, населяющих Землю. Обмен веществ и саморегуляция в биологических системах. Самовоспроизведение; наследственность и изменчивость как основа существования живой материи. Рост и развитие. Раздражимость; формы избирательной реакции организмов на внешние воздействия. Ритмичность процессов жизнедеятельности; биологические ритмы и их значение. Дискретность живого вещества и взаимоотношение части и целого в биосистемах. Энергозависимость живых организмов; формы потребления энергии.

Царства живой природы; краткая характеристика естественной системы классификации живых организмов. Видовое разнообразие.

■ Демонстрация схем структуры царств живой природы.

Тема 1.2.

Развитие биологии в додарвиновский период (2 часа)

Развитие биологии в додарвиновский период. Господство в науке представлений об «изначальной целесообразности» и неизменности живой природы. Работы К. Линнея по систематике растений и животных. Эволюционная теория Ж. Б. Ламарка.

■ Демонстрация биографий ученых, внесших вклад в развитие эволюционных идей. Жизнь и деятельность Ж. Б. Ламарка.

Тема 1.3.

Теория Ч. Дарвина о происхождении видов путем естественного отбора (5 часов)

Предпосылки возникновения учения Ч. Дарвина: достижения в области естественных наук, экспедиционный материал Ч. Дарвина. Учение Ч. Дарвина об искусственном отборе.

Учение Ч. Дарвина о естественном отборе. Вид — элементарная эволюционная единица. Всеобщая индивидуальная изменчивость и избыточная численность потомства. Борьба за существование и естественный отбор.

■ Демонстрация. Биография Ч. Дарвина. Маршрут и конкретные находки Ч. Дарвина во время путешествия на корабле «Бигль».

Тема 1.4.

Приспособленность организмов к условиям внешней среды как результат действия естественного отбора (2 часа)

Приспособительные особенности строения, окраски тела и поведения животных. Забота о потомстве. Физиологические адаптации.

Тема 1.5.

Микроэволюция (2 часа)

Вид как генетически изолированная система; репродуктивная изоляция и ее механизмы. Популяционная структура вида; экологические и генетические характеристики популяций. Популяция — элементарная эволюционная единица. Пути и скорость видообразования; географическое и экологическое видообразование.

- Демонстрация схем, иллюстрирующих процесс географического видообразования; живых растений и животных, гербариев и коллекций, показывающих индивидуальную изменчивость и разнообразие сортов культурных растений и пород домашних животных, а также результаты приспособленности организмов к среде обитания и результаты видообразования.
- Лабораторные и практические работы Изучение приспособленности организмов к среде обитания.

Изучение изменчивости, критериев вида, результатов искусственного отбора на сортах культурных растений.

Тема 1.6.

Биологические последствия адаптации. Макроэволюция (3 часа)

Главные направления эволюционного процесса. Биологический прогресс и биологический регресс (А. Н. Северцов). Пути достижения биологического прогресса. Основные закономерности эволюции. дивергенция, конвергенция, параллелизм, правила эволюции групп организмов.

Результаты эволюции: многообразие видов, органическая целесообразность, постепенное усложнение организации.

■ Демонстрация примеров гомологичных и аналогичных органов, их строения и происхождения в онтогенезе; схемы соотношения путей прогрессивной биологической эволюции; материалов, характеризующих представителей животных и растений, внесенных в Красную книгу и находящихся под охраной государства.

Тема 1.7.

Возникновение жизни на Земле (2 часа)

Органический мир как результат эволюции. Возникновение и развитие жизни на Земле. Химический, предбиологический (теория академика А.И.Опарина), биологический и социальный этапы развития живой материи.

Филогенетические связи в живой природе; естественная классификация живых организмов.

■ Демонстрация схем возникновения одноклеточных эукариот, многоклеточных организмов, развития царств растений и животных.

Тема 1.8

Развитие жизни на Земле (3 часа)

Развитие жизни на Земле в архейскую и протерозойскую эры. Первые следы жизни на Земле. Появление всех современных типов беспозвоночных животных. Первые хордовые. Развитие водных растений.

Развитие жизни на Земле в палеозойскую эру. Появление и эволюция сухопутных растений. Папоротники, семенные папоротники, голосеменные растения. Возникновение позвоночных: рыбы, земноводные, пресмыкающиеся.

Развитие жизни на Земле в мезозойскую и кайнозойскую эры. Появление и распространение покрытосеменных растений. Возникновение птиц и млекопитающих. Появление и развитие приматов.

Происхождение человека. Место человека в живой природе. Систематическое положение вида Homo sapiens в системе животного мира. Признаки и свойства человека, позволяющие отнести его к различным систематическим группам царства животных. Стадии эволюции человека: древнейший человек, древний человек, первые современные люди.

Свойства человека как биологического вида. Популяционная структура вида Homo sapiens; человеческие расы: расообразование; единство происхождения рас. Антинаучная сущность расизма.

■Демонстрация репродукций картин 3. Буриана, отражающих фауну и флору различных эр и периодов; схем развития царств живой природы; окаменелостей, отпечатков растений в древних породах.

Модели скелетов человека и позвоночных животных.

■ Основные понятия. Биология. Жизнь. Основные отличия живых организмов от объектов неживой природы. Уровни организации живой материи. Объекты и методы изучения в биологии. Многообразие живого мира.

Эволюция. Вид, популяция; их критерии. Борьба за существование. Естественный отбор как результат борьбы за существование в конкретных условиях среды обитания. «Волны жизни».

Макроэволюция. Биологический прогресс и биологический регресс. Пути достижения биологического прогресса; ароморфозы, идиоадаптации, общая дегенерация.

Теория академика А. И. Опарина о происхождении жизни на Земле.

Развитие животных и растений в различные периоды существования Земли. Постепенное усложнение организации и приспособление к условиям среды живых организмов в процессе эволюции. Происхождение человека. Движущие силы антропогенеза. Роль труда в процессе превращения обезьяны в человека. Человеческие расы, их единство. Критика расизма.

■ Умения. Объяснять с материалистических позиций процесс возникновения жизни на Земле как естественное событие в цепи эволюционных преобразований материи в целом.

Объяснять основные свойства живых организмов, в том числе процессы метаболизма, саморегуляцию; понятие гомеостаза как результат эволюции живой материи. Использовать текст учебника и других учебных пособий для составления таблиц, отражающих этапы развития жизни на Земле, становления человека. Использовать текст учебника для работы с натуральными объектами. Давать аргументированную критику расизма.

■ Межпредметные связи. Не органическая химия. Кислород, водород, углерод, азот, сера, (фосфор и другие элементы периодической системы Д. И. Менделеева, их основные свойства.

Органических соединений. Физика. Ионизирующее излучение; понятие о дозе излучения и биологической защите. Астрономия. Организация планетных систем. Солнечная система; ее структура. Место планеты Земля в Солнечной системе.

И с т о р и я . Культура Западной Европы конца XV — первой половины XVII в. Культура первого периода новой истории. Великие географические открытия.

Экономическая география население мира. География населения мира.

Физическая география. История континентов.

РАЗДЕЛ 2

Структурная организация живых организмов (10 часов)

Тема 2.1.

Химическая организация клетки (2 часа)

Элементный состав клетки. Распространенность элементов, их вклад в образование живой материи и объектов неживой природы. Макроэлементы, микроэлементы; их вклад в образование неорганических и органических молекул живого вещества.

Неорганические молекулы живого вещества: вода; химические свойства и биологическая роль. Соли неорганических кислот, их вклад в обеспечение процессов жизнедеятельности и поддержание гомеостаза. Роль катионов и анионов в обеспечении процессов жизнедеятельности. Осмос и осмотическое давление; осмотическое поступление молекул в клетку.

Органические молекулы. Биологические полимеры — белки; структурная организация. Функции белковых молекул. Углеводы. Строение и биологическая роль. Жиры — основной структурный компонент клеточных мембран и источник энергии. ДНК — молекулы наследственности. Редупликация ДНК, передача наследственной информации из поколения в поколение. Передача наследственной информации из ядра в цитоплазму; транскрипция. РНК, структура и функции. Информационные, транспортные, рибосомальные РНК.

Демонстрация объемных моделей структурной организации биологических полимеров: белков и нуклеиновых кислот; их сравнение с моделями искусственных полимеров (поливинилхлорид).

Тема 2.2.

Обмен веществ и преобразование энергии в клетке (3 часа)

Обмен веществ и превращение энергии в клетке. Транспорт веществ через клеточную мембрану. Пино- и фагоцитоз. Внутриклеточное пищеварение и накопление энергии; рас-

щепление глюкозы. Биосинтез белков, жиров и углеводов в клетке.

Тема 2.3.

Строение и функции клеток (5 часов)

Прокариотические клетки; форма и размеры. Строение цитоплазмы бактериальной клетки; организация метаболизма у прокариот. Генетический аппарат бактерий. Спорообразование. Размножение. Место и роль прокариот в биоценозах.

Эукариотическая клетка. Цитоплазма эукариотической клетки. Органеллы цитоплазмы, их структура и функции. Цитоскелет. Включения, значение и роль в метаболизме клеток. Клеточное ядро — центр управления жизнедеятельностью клетки. Структуры клеточного ядра: ядерная оболочка, хроматин (гетерохроматин), ядрышко. Особенности строения растительной клетки.

Деление клеток. Клетки в многоклеточном организме. Понятие о дифференцировке клеток многоклеточного организма. Митотический цикл: интерфаза, редупликация ДНК; митоз, фазы митотического деления и преобразования хромосом; биологический смысл и значение митоза (бесполое размножение, рост, восполнение клеточных потерь в физиологических и патологических условиях).

Клеточная теория строения организмов.

- Демонстрация. Принципиальные схемы устройства светового и электронного микроскопа. Схемы, иллюстрирующие методы препаративной биохимии и иммунологии. Модели клетки. Схемы строения органоидов растительной и животной клеток. Микропрепараты клеток растений, животных и одноклеточных грибов. Фигуры митотического деления в клетках корешка лука под микроскопом и на схеме. Материалы, рассказывающие о биографиях ученых, внесших вклад в развитие клеточной теории.
 - Лабораторная работа
 Изучение клеток бактерий, растений и животных на готовых микропрепаратах*.
- Основные понятия. Органические и неорганические вещества, образующие структурные компоненты клеток. Прокариоты: бактерии и синезеленые водоросли (цианобактерии). Эукариотическая клетка; многообразие эукариот; клетки одноклеточных и многоклеточных организмов. Особенности растительной и животной клеток. Ядро и цитоплазма главные составные части клетки. Органоиды цитоплазмы. Включения. Хромосомы. Кариотип. Митотический цикл; митоз. Биологический смысл митоза. Положения клеточной теории строения организмов.
- Умения. Объяснять рисунки и схемы, представленные в учебнике. Самостоятельно составлять схемы процессов, протекающих в клетке, и «привязывать» отдельные их этапы к различным клеточным структурам. Иллюстрировать ответ простейшими схемами и рисунками клеточных структур. Работать с микроскопом и изготовлять простейшие препараты для микроскопического исследования.
- Межпредметные связи. Не органические связи. Строение вещества. Окислительно-восстановительные реакции.

О р г а н и ч е с к а я $\,$ х и м и я . Принципы организации органических соединений. Углеводы, жиры, белки, нуклеиновые кислоты.

Ф и з и к а . Свойства жидкостей, тепловые явления. Законы термодинамики.

РАЗДЕЛ 3

Размножение и индивидуальное развитие организмов (5 часов)

Тема 3.1.

Размножение организмов (2 часа)

Сущность и формы размножения организмов. Бесполое размножение растений и животных. Половое размножение животных и растений; образование половых клеток, осеменение

и оплодотворение. Биологическое значение полового размножения. Гаметогенез. Периоды образования половых клеток. размножение, рост, созревание (мейоз) и формирование половых клеток. Особенности сперматогенеза и овогенеза. Оплодотворение.

■ Демонстрация плакатов, иллюстрирующих способы вегетативного размножения плодовых деревьев и овощных культур; микропрепаратов яйцеклеток; фотографий, отражающих разнообразие потомства у одной пары родителей.

Тема 3.2.

Индивидуальное развитие организмов (онтогенез) (3 часа)

Эмбриональный период развития. Основные закономерности дробления, образование однослойного зародыша — бластулы. Гаструляция; закономерности образования двуслойного зародыша — гаструлы. Первичный органогенез и дальнейшая дифференцировка тканей, органов и систем. Постэмбриональный период развития. Формы постэмбрионального периода развития. Непрямое развитие; полный и неполный метаморфоз. Биологический смысл развития с метаморфозом. Прямое развитие. Старение.

Общие закономерности развития. Биогенетический закон.

Сходство зародышей и эмбриональная дивергенция признаков (закон К. Бэра). Биогенетический закон (Э. Геккель и К. Мюллер). Работы А. Н. Северцова об эмбриональной изменчивости.

- Демонстрация таблиц, иллюстрирующих процесс метаморфоза у членистоногих, позвоночных (жесткокрылых и чешуйчатокрылых, амфибий); таблиц, отражающих сходство зародышей позвоночных животных, а также схем преобразования органов и тканей в филогенезе.
- Основные понятия. Многообразие форм и распространенность бесполого размножения. Биологическое значение бесполого размножения. Половое размножение и его биологическое значение. Гаметогенез; мейоз и его биологические значение. Оплодотворение.
- Умения. Объяснять процесс мейоза и другие этапы образования половых клеток, используя схемы и рисунки из учебника. Характеризовать сущность бесполого и полового размножения.
- Межпредметные связи. Неорганическая химия. Охрана природы от воздействия отходов химических производств.

 Φ и з и к а . Электромагнитное поле. Ионизирующее излучение, понятие о дозе излучения и биологической защите.

РАЗДЕЛ 4

Наследственность и изменчивость организмов (20 часов)

Тема 4.1.

Закономерности наследования признаков (10 часов)

Открытие Γ . Менделем закономерностей наследования признаков. Гибридологический метод изучения наследственности.

Генетическое определение пола.

Генотип как целостная система. Взаимодействие аллельных и неаллельных генов в определении признаков.

- Демонстрация. Карты хромосом человека. Родословные выдающихся представителей культуры. Хромосомные аномалии человека и их фенотипические проявления.
 - Лабораторная работа

Решение генетических задач и составление родословных.

Тема 4.2.

Закономерности изменчивости (6 часов)

Основные формы изменчивости. Генотипическая изменчивость. Мутации. Значение мута-

ций для практики сельского хозяйства и биотехнологии. Комбинативная изменчивость. Эволюционное значение комбинативной изменчивости.

Фенотипическая, или модификационная, изменчивость. Роль условий внешней среды в развитии и проявлении признаков и свойств.

- Демонстрация. Примеры модификационной изменчивости.
- Лабораторная работа. Построение вариационной кривой (размеры листьев растений, антропометрические данные учащихся).

Тема 4.3.

Селекция растений, животных и микроорганизмов (4 часа)

Центры происхождения и многообразия культурных растений. Сорт, порода, штамм. Методы селекции растений и животных. Достижения и основные направления современной селекции. Значение селекции для развития сельскохозяйственного производства, медицинской, микробиологической и других отраслей промышленности.

- Демонстрация. Сравнительный анализ пород домашних животных и сортов культурных растений и их диких предков. Коллекции и препараты сортов культурных растений, отличающихся наибольшей плодовитостью.
- Основные понятия. Ген. Генотип как система взаимодействующих генов организма. Признак, свойство, фенотип. Генетическое определение пола у животных и растений. Наследственная и ненаследственная изменчивость. Мутационная и комбинативная изменчивость. Модификации; норма реакции. Селекция; гибридизация и отбор. Гетерозис и полиплоидия, их значение. Сорт, порода, штамм.
- Умения. Объяснять механизмы передачи признаков и свойств из поколения в поколение, а также возникновение отличий от родительских форм у потомков. Составлять простейшие родословные и решать генетические задачи. Понимать необходимость развития теоретической генетики и практической селекции для повышения эффективности сельскохозяйственного производства и снижения себестоимости продовольствия.
- Межпредметные связи. Неорганическая химия. Охрана природы от воздействия отходов химических производств.

Органических молекул: белки, нуклеиновые кислоты (ДНК, РНК).

 Φ и з и к а . Дискретность электрического заряда. Основы молекулярно-кинетической теории. Рентгеновское излучение. Понятие о дозе излучения и биологической защите.

РАЗДЕЛ 5

Взаимоотношения организма и среды. Основы экологии (5 часов)

Тема 5.1.

Биосфера, ее структура и функции (3 часа)

Биосфера — живая оболочка планеты. Структура биосферы. Компоненты биосферы: живое вещество, видовой состав, разнообразие и вклад в биомассу, биокосное и косное вещество биосферы (В. И. Вернадский). Круговорот веществ в природе.

Естественные сообщества живых организмов. Биогеоценозы. Компоненты биогеоценозов: продуценты, консументы, редуценты. Биоценозы: видовое разнообразие, плотность популяций, биомасса.

Абиотические факторы среды. Роль температуры, освещенности, влажности и других факторов в жизнедеятельности сообществ. Интенсивность действия фактора среды; ограничивающий фактор. Взаимодействие факторов среды, пределы выносливости. Биотические факторы среды. Цепи и сети питания. Экологические пирамиды: чисел, биомассы, энергии. Смена биоценозов. Причины смены биоценозов; формирование новых сообществ.

Формы взаимоотношений между организмами. Позитивные отношения — симбиоз: мутуализм, кооперация, комменсализм. Антибиотические отношения: хищничество, паразитизм, конкуренция. Нейтральные отношения — нейтрализм.

- Демонстрация: а) схем, иллюстрирующих структуру биосферы и характеризующих отдельные ее составные части, таблиц видового состава и разнообразия живых организмов биосферы; схем круговорота веществ в природе;
- б) карт, отражающих геологическую историю материков; распространенности основных биомов суши;
 - в) диафильмов и кинофильма «Биосфера»;
 - г) примеров симбиоза представителей различных царств живой природы.
 - Лабораторные и практические работы

Составление схем передачи веществ и энергии (цепей питания).

Изучение и описание экосистемы своей местности, выявление типов взаимодействия разных видов в данной экосистеме.

Тема 5.2.

Биосфера и человек (2 часа)

Природные ресурсы и их использование.

Антропогенные факторы воздействия на биоценозы (роль человека в природе); последствия хозяйственной деятельности человека. Проблемы рационального природопользования, охраны природы: защита от загрязнений, сохранение эталонов и памятников природы, обеспечение природными ресурсами населения планеты.

- Демонстрация карт заповедных территорий нашей страны.
- Практическая работа

Анализ и оценка последствий деятельности человека в экосистемах.

■ Основные понятия. Биосфера. Биомасса Земли. Биологическая продуктивность. Живое вещество и его функции. Биологический круговорот веществ в природе. Экология. Внешняя среда. Экологические факторы. Абиотические, биотические и антропогенные факторы. Экологические системы: биогеоценоз, биоценоз, агроценоз. Продуценты, консументы, редуценты. Саморегуляция, смена биоценозов и восстановление биоценозов.

Воздействие человека на биосферу. Охрана природы; биологический и социальный смысл сохранения видового разнообразия биоценозов. Рациональное природопользование; неисчерпаемые и исчерпаемые ресурсы. Заповедники, заказники, парки. Красная книга. Бионика.

■ Умения. Выявлять признаки приспособленности видов к совместному существованию в экологических системах. Анализировать видовой состав биоценозов. Выделять отдельные формы взаимоотношений в биоценозах; характеризовать пищевые сети в конкретных условиях обитания.

Применять на практике сведения об экологических закономерностях в промышленности и сельском хозяйстве для правильной организации лесоводства, рыбоводства и т. д., а также для решения всего комплекса задач охраны окружающей среды и рационального природопользования.

■ Межпредметные связи. Неорганическая химия. Кислород, сера, азот, фосфор, углерод, их химические свойства. Охрана природы от воздействия отходов химических про-изводств.

Физическая география. Климат Земли, климатическая зональность.

Ф и з и к а . Понятие о дозе излучения и биологической защите.

Заключение (1 час)

Резервное время — 7 часов.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ, ЗАКАНЧИВАЮЩИХ 9 КЛАСС

В результате изучения предмета учащиеся 9 классов должны:

знать/понимать

- особенности жизни как формы существования материи;
- роль физических и химических процессов в живых системах различного иерархического уровня организации;
- фундаментальные понятия биологии;
- сущность процессов обмена веществ, онтогенеза, наследственности и изменчивости;
- основные теории биологии: клеточную, хромосомную теорию наследственности, эволюционную, антропогенеза;
 - соотношение социального и биологического в эволюции человека;
- основные области применения биологических знаний в практике сельского хозяйства, в ряде отраслей промышленности, при охране окружающей среды и здоровья человека;

уметь

- пользоваться знанием общебиологических закономерностей для объяснения с материалистических позиций вопросов происхождения и развития жизни на Земле, а также различных групп растений, животных, в том числе и человека;
 - давать аргументированную оценку новой информации по биологическим вопросам; •
- работать с микроскопом и изготовлять простейшие препараты для микроскопических исследований;
- решать генетические задачи, составлять родословные, строить вариационные кривые на растительном и животном материале;
- работать с учебной и научно-популярной литературой, составлять план, конспект, реферат;
 - владеть языком предмета.